2022年诺贝尔物理学奖授予法国、美国和奥地利的三位科学家阿兰·阿斯佩、约翰·弗朗西斯·克劳泽和安东·塞林格,以表彰他们利用纠缠光子实验检验贝尔不等式以及在开拓量子信息科学方面做出的卓越贡献。贝尔不等式在量子力学基本问题和量子信息研究中都有着不可或缺的地位,它的违背直接揭示了量子力学的基本特征——量子非定域性。文章在讲清楚基本科学概念的基础上,简要介绍了贝尔不等式理论的建立及验证其违背的实验研究的科学历程。为了解决EPR佯谬,基于玻姆的定域隐变量理论,约翰⋅贝尔提出了关于纠缠态上的关联测量满足的基本不等式——贝尔不等式。他还发现,量子力学关于关联的计算结果违背贝尔不等式,可以在类空距离上展现出“鬼魅”的长程量子关联。这种长程关联看似有超光速的“超距作用”,但这只是人们明显或潜在地使用了“波包塌缩假设”。EPR文章明显地采用这个假设推断远方客体共存的物理实在要素,由此对量子力学完备性提出质疑。文章评述了阿斯佩、克劳泽和塞林格荣获诺贝尔物理学奖的关于贝尔不等式违背的判定性实验,介绍了华人物理学家在纠缠态和贝尔不等式研究方面的基础性贡献,包括早年吴健雄利用正负电子湮灭产生EPR光子的先驱性实验,李政道和杨振宁关于产生两个中性K介子图片形成EPR态的建议,史砚华、欧泽宇、彭堃墀等利用非线性光学晶体,包括陈创天等人发现的非线性光学晶体,产生纠缠光子对的原创性工作。
从太空中收集阳光并将其发射到地球,这一概念常常出现在科幻小说中。但现在,世界各国政府正在认真考虑“天基太阳能”,将其作为满足我们能源需求的潜在方案。
19世纪末放射性的发现打开了微观世界的大门。彼时,核物理学家借助天然射线轰击标靶来探索物质内部的结构。今天人们已经知道核子(质子和中子统称核子)是自然界一切可见物质的主要组分。然而核子的基本性质仍有许多问题未被完全理解。从整体角度看,质子携带一个正电荷而中子没有。如果深入到核子内部,又如何理解质子和中子之间的联系及异同呢?